Автоматизация теплицы своими руками

Теплицы
Умная теплица своими руками: виды, пошаговая инструкция изготовления. Готовые проекты: Ардуино, Новатор, LIFE ENERGY и другие. Фото, видео.
Содержание
  1. Умная теплица своими руками, готовые проекты
  2. Умная теплица и ее особенности
  3. Преимущества умных теплиц
  4. Виды умных теплиц
  5. Умная теплица своими руками: пошаговая инструкция
  6. 1 этап. Автоматический обогрев почвы и воздуха
  7. 2 этап. Автоматическое проветривание
  8. 3 этап. Автоматизация полива
  9. Освещение
  10. Обзоры готовых проектов умных теплиц + цены и фото
  11. Умная теплица на базе arduino из подручного материала с регулятором температуры
  12. Техническая структура теплицы
  13. Задачи
  14. Возможности модели
  15. Описание принципа работы
  16. Делаем сами умную и автоматизированную теплицу: проекты и что внедрить
  17. Необходимость автоматизации теплицы
  18. Решаемые задачи
  19. Возможности и оборудование
  20. Преимущества перед обычной
  21. Проекты и схемы умных теплиц
  22. Возможности удаленного контроля и регулирования
  23. Основные критерии выбора систем для автоматизации теплиц
  24. Приборы для автоматизации теплиц за 2020 год
  25. Пошаговая инструкция создания умной теплицы
  26. Пошаговое руководство как с помощью автоматики оборудовать теплицу: обзор видов и производителей, как сделать своими руками
  27. Преимущества использования автоматики
  28. Виды автоматических устройств для теплиц и парников
  29. Как сделать своими руками: примеры расчетов, схемы и чертежи, лучшие варианты
  30. Идеи автоматизации с использованием подручных средств
  31. Полезные советы: какие компоненты для автоматизации можно купить в магазине, на чем сэкономить
  32. Автоматизация теплицы своими руками
  33. Регулятор температуры в теплице из пластиковых бутылок
  34. Отзывы:
  35. Открывание окон теплиц на реле
  36. Отзывы:
  37. Два вида автоматики для проветривания теплиц сравнение.
  38. Отзывы:
  39. Проветривание теплицы.Автоматическая форточка. Автомат для проветривания для теплиц
  40. Отзывы:
  41. Пример использования современных средств автоматизации в теплице, как сделать умную теплицу на ардуино

Умная теплица своими руками, готовые проекты

«Умная теплица» – вариант выбора для занятых людей. В целях экономии садоводы-огородники часто отдают предпочтение строительству сооружения своими руками. При возведении принимаются во внимание мониторинг и возможность коррекции температуры воздуха внутри помещения, влажности почвы, а также ее состояния.

Умная теплица и ее особенности

Автоматизация рутинных процессов позволяет экономить время на их выполнении и сосредоточить свое внимание на пасынковании, пересаживании и другом.

Преимущества умных теплиц

К главным преимуществам относятся:

  • поддержание необходимой температуры внутри помещения путем контроля над своевременностью обогрева и проветривания;
  • своевременность капельного полива;
  • восстановление (мульчирование) почвы под заданную культуру.

Виды умных теплиц

В зависимости от типа энергоснабжения достаточно условно теплицы подразделяются на автономные и энергозависимые.

Как следует из названия, автономные сооружения не зависят от подачи электроэнергии. Функционирование происходит благодаря использованию тепловой или солнечной энергии. К недостаткам следует отнести требования к оборудованию.

Для работы второго типа теплиц требуется электроэнергия. К ее достоинствам относят более низкую стоимость по отношению к автономным сооружениям. Тем не менее, можно выделить два ее недостатка. Первый – плата за электроэнергию, которая может быть высокой. Второй – зависимость от электроснабжения.

Умная теплица своими руками: пошаговая инструкция

Для начала определяются с выбором площадки для строительства, при этом учитывают инсоляцию, ландшафт, расположение грунтовых вод и розу ветров.

Не ставьте теплицу туда, где есть тень Схема наиболее благоприятного расположения теплицы относительно сторон света

Вторым моментом является выбор материала с учетом предназначения теплицы. Например, толщина сотового поликарбоната в 8 мм будет достаточна для покрытия теплицы, предназначенной для эксплуатации с весны до осени. Если же планируется выращивать культуры и зимой толщину покрытия рекомендуется увеличить до 16 мм при условии надежной герметизации.

Помочь сохранить тепло может теплоизолирующий фундамент.

Чтобы вложить в конструкцию «интеллект» потребуется осуществить монтаж систем автоматической вентиляции, автополива и обогрева почвы и воздуха.

1 этап. Автоматический обогрев почвы и воздуха

Предусмотрено два технических варианта обогрева теплицы:

  • В первый с использованием электроэнергии входят подключение теплового пола, конвекторов и инфракрасных обогревателей.

  • Второй основан на подключении водяного отопления с обязательным контролем работы котла вручную.

Обогрев воздуха

В целях обогрева воздуха предпочтительнее остановить свой выбор на электрообогревателях. Рекомендуется закреплять их к каркасу вместе с электросхемами и датчиками, срабатывающими при понижении температуры.

Обогрев почвы

Обогрев грунта можно производить тремя способами:

натуральным – за счет солнечного света;

биологическим – благодаря энергии, выделяющейся при гниении биоматериалов; недостатком является невозможность контроля температуры;

техническим, включающим обогрев почвы посредством:

  • подачи теплой воды по проложенным под землей трубам, подсоединенным к котлу;

  • монтажа системы «теплый пол», подключенной к электросети.

2 этап. Автоматическое проветривание

Иногда оказывается достаточным установки термопривода внутри теплицы или за ее пределами.

Форточки рекомендуется устанавливать на максимально возможной высоте.

В ряде случаев производится монтаж системы вентиляции, запускающей вентиляторы при изменении температуры воздуха.

3 этап. Автоматизация полива

Капельное орошение реализуется путем установки системы, представляющей совокупность резиновых и пластиковых трубок, а также капельниц. При такой системе полива вода в ходе подачи будет разогреваться, что важно для корневой системы.

Ключевым элементом комплекса является гидроавтомат. Резервуаром служит бак, подача воды осуществляется самотеком.

Освещение

Рекомендуемая продолжительность светового дня в теплице должна составлять 12-16 часов в сутки. Режим работы источников искусственного освещения рекомендуется соотносить с темным и светлым временем суток.

Для автоматизации процесса используют датчики освещенности и таймеры.

Для обеспечения искусственного освещения чаще используют лампы:

  • накаливания – их недостатком является инфракрасное излучение, способное при близком расположении нанести вред растениям;

  • натриевые – их спектр схож со спектром солнечного света, однако ограничивает их применение малый срок эксплуатации;

  • светодиодные – отличаются высоким уровнем безопасности, а спектр близок к естественному освещению;

  • люминесцентные – характеризуются экономичностью, высоким КПД и продолжительным временем эксплуатации.

В зависимости от целей можно использовать также источники инфракрасного или ультрафиолетового диапазонов.

Обзоры готовых проектов умных теплиц + цены и фото

Примеры наиболее распространенных моделей готовых проектов представлены в таблице ниже:

Название модели Особенности Цена, руб. Фото.
Отечественные
Умная теплица (4*2*2 м) Бывают типовыми или изготавливаются по заказу. Выполняются из поликарбоната. Снабжена системами терморегуляции и автополива. Срок службы – 15 лет. от 7200 .
Новатор-4 (в комплектациях «Комфорт», «Классика», «Премиум», «Элит»); размеры варьируют Модель арочной формы с сечением труб 4*4 см и расстоянием между дугами 0,66 м. Выполнена из поликарбоната. Выдерживает до 160 кг снега на м2. от 11000 .
LIFE ENERGY-4 (в стандартной и дополнительной комплектациях) Круглогодичная. Выполнена с однокамерным стеклопакетом. Снабжена автоматическими системами: полива, вентиляции, подсветки и обогрева. 524600-1573900 .
LIFE ENERGY-5 Круглогодичная, шириной 4 м. Выполнена с люками для проветривания (2-6) с автоприводом. Снабжена автоматическими системами: полива, вентиляции, подсветки и обогрева. 626100-1848300 .
ЙоТик (обучающий электронный набор-конструктор) Набор включает: корпус в виде конструктора, контроллер ЙоТик v1.0, плату расширения Ардуино, светодиодную ленту 20 см, модули четырех реле и силового MOS транзистора, электропомпу, трубку для подачи воды; а также датчики освещенности, температуры, влажности воздуха, почвы. 15 000 .
Ардуино Мега Конструкция позволяет создать теплицу с функциями автоматического контроля температуры, влажности, освещенности, проведения полива, создания необходимого микроклимата. Управление возможно дистанционно. 15 000
«Умная теплица» по Курдюмову Предусмотрены автоматизированные режимы: контроля над температурой воздуха, мульчирования почвы, капельного полива, а также проветривания. 22700-77000 .
Иностранного производства
WERDEBOX (создана в Италии) Источниками освещения являются светодиоды. Культуры могут выращиваться на 4-х ярусах. Для роста растений предусмотрены специальные капсулы. Благодаря современному дизайну теплица легко вписывается практически в любой интерьер. 600 000 .

Умная теплица на базе arduino из подручного материала с регулятором температуры

Дорогие читатели представляю вашему вниманию детский проект под моим руководством «Smart greenhouse».

Данному проекту уже три года, но он полностью функционирует и до сих пор даёт урожай в домашних условиях.

Техническая структура теплицы

Материал – картон, пластик прозрачный и не прозрачный, пищевая плёнка, удобрение.

Электронная начинка – Arduino Uno, DC двигатель (водяная помпа), светодиоды, двухканальный модуль реле 5В, керамический нагреватель, кулер, блок питания на 12 В и 60 Вт, датчик влажности почвы, датчик температуры и влажности воздуха.

Как показало время — выбранный материал оправдал все идеи.
В качестве ёмкостей для выращивания урожая использовали коробки из под обуви (мужская детская обувь).
Коробки были покрыты изнутри акриловой краской, которую часто используют в декоративных целях. После высыхания краски, каждая коробка было покрыта изнутри и снаружи пищевой плёнкой. Коробки прикручены к фанере, которая является соединительной опорой двух коробок. Для прочности конструкции, фасад теплицы был обклеен пластиковыми футлярами из под CD дисков (набралось огромное количество не нужного софта, музыки и фильмов). Клей использовали двух видом — клей момент кристалл для крепления к коробкам термоклей для заливки места стыков пластика.

Для того, чтобы было освещение в любую погоду построили рамку, где закрепили светодиоды (лучше ультрафиолетовые) — расстояние между ними не более 5 см на высоте не менее 25 см. Рамка создана из пластиковых уголков, которых полно в строительных магазинах.

К данной рамке закрепили пластиковую трубку диаметром 1,5 см (дети принесли, от какой то конструкции), где просверлили множество отверстий (до 3мм в диаметре) с одной стороны трубки, расстояние между отверстиями не менее 3 см.

Так как растениям нужен ультрафиолет, и его очень много от естественного освещения, то принято решение сделать прозрачные стенки. Так как стекло поглощает ультрафиолет, взяли пластик от тех же футляров из под компакт дисков.

Так как растения могут быть разной высоты, то одну из сторон было решено сделать выше на один футляр. Крышка также сделана из футляров и спокойно может открываться.

Для скрепления применяли те же клеи, что описаны были ранее. Для прочности к краям приклеены деревянные рейки, купленные в строительных магазинах.

Места стыка крышки и стенок покрыли теплоизоляцией — получилось немного коряво, но я старался не вмешиваться в процесс творчества детей — это их проект и они должны получить личный опыт в разработке проекта.

Теперь настало время проектировки электроники в теплицу.

Задачи

Разработка структуры «Умной теплицы»

Разработка ПО по ручному управлению и автономной работе проекта, отвечающего поставленным задачам.

Электромонтаж проекта «Умная теплица» — автономное и автоматическое отслеживание состояния влажности почвы и воздуха, температуры воздуха в теплице, автоматический полив (увлажнение) почвы и нагрев воздуха до комфортной, растениям, температуры, автоматическое освещение.

Разработка модели с возможностью реализации её любому человеку и для любых природных условиях по выращиванию растений любого вида.

Возможности модели

Автоматическое управление освещением

Автоматическое управление поливом.

Автоматическое регулировка температуры и влажности воздуха и почвы.

  • Описание принципа работы

    Датчики влажности почвы и датчик температуры и влажности воздуха каждую секунду отслеживают показания. Данные показания обрабатываются в плате Arduino Uno и выдаются команды согласно загруженной в неё программе.

    Программа содержит два условия и бесконечный цикл. Если температура воздуха меньше 20 градусов по Цельсию, то подаётся команда на включение через электромагнитное реле керамического нагревателя и кулера. Под действием конвекции воздух начинает равномерно прогреваться, когда воздух прогреется до 21 градуса по Цельсию, то подаётся команда на отключения нагревателя через реле.

    Если влажность почвы будет выше установленного значения, то также подаётся команда на реле, где запускается насос для полива растений и увлажнения почвы, пока не понизится до нужного значения.

    В данном проекте есть керамический нагреватель — его мы прикрутили к радиатору с кулером, чтобы нагретый воздух быстрее циркулировал. По идеи в помещении для большинства растений он не нужен, за исключением тропических видов.

    На видео показана работа теплицы

    На сегодняшний день теплица выполняет свою функцию, хорошо получается вырастить капризные растения. Сейчас идёт модернизация её управления и улучшения качества.

    Всё дорожает и фрукты с овощами тоже. Выращенный томат, огурцы и сладкий перец намного вкуснее магазинных. Очень насыщенный вкус. Попробуйте, не пожалеете.

    Больше интересных проектов можно посмотреть здесь.

    Делаем сами умную и автоматизированную теплицу: проекты и что внедрить

    Искусственная среда для выращивания растений способствует круглогодичному снятию урожая. При создании микроклимата частным образом используются готовые проекты умной теплицы и самоделки. Среди систем автоматизации тепличных комплексов лидирует аппаратно-программное обеспечение Arduino, которое позволяет роботизировать домашнее хозяйство даже людям, малосведущим в электронике.

    Необходимость автоматизации теплицы

    Жизнедеятельность растений напрямую связана с температурным режимом, влажностью, освещенностью и другими факторами. Малейшие отклонения в окружающей среде негативно сказываются на темпах роста и урожайности. Соблюдение строгих тепличных условий – кропотливый и трудоемкий процесс, который нуждается в постоянном контроле. Умная теплица своими руками сводит к минимуму человеческое участие, освобождает время и позволяет управлять ростом овощных и фруктовых культур на расстоянии.

    Решаемые задачи

    Автоматизация создания и поддержания необходимых условий окружающей среды подразумевает управление:

    • температурным режимом;
    • поливом и орошением;
    • освещением;
    • подогревом почвы;
    • подкормкой CO₂.

    Особая роль отводится мониторингу процессов, автономности и оперативной реакции на малейшие отклонения.

    Возможности и оборудование

    Считывание данных и изменение состояния окружающей среды производится с помощью датчиков и исполнительных устройств. Главенствующую роль играет контроллер, который сопряжен с системой дистанционного управления. Каждое устройство, входящее в робототехнический комплекс, выполняет определенные функции. Оборудование умной теплицы состоит из систем:

    • поддержания оптимального температурного режима. Для понижения температуры применяются актуаторы. С помощью этих приспособлений регулируется воздухообмен между помещением и внешней средой. Получая сигнал извне, шаговый двигатель, пневматическое или гидравлическое устройство приводит форточку в необходимое положение. Соответствующие сигналы генерируются датчиками температуры и ветра;
    • подогрева почвы. Оптимальная температура в теплице достигается с помощью терморегуляторов, ТЭНов, электрокабеля или других нагревательных приборов, интенсивность работы которых зависит от команд температурных датчиков;
    • освещения. Система включает лампы и датчик освещенности, главной деталью которого является фоторезистор. Формирование управляющего сигнала происходит за счет изменения сопротивления в зависимости от интенсивности светового потока. Помимо осветительных приборов, в регулировании освещенности могут участвовать автоматические шторы;
    • контроля уровня CO₂. Соответствующий датчик связан с вентиляторами, посредством которых помещение освобождается от выработанного растениями кислорода. Подкормка растений двуокисью углерода повышает урожайность на 30%;
    • полива. Автоматизация полива обеспечивается сенсорами влажности (гигрометрами). Из экономических соображений система оборудуется датчиками расхода воды. Простейшие устройства представлены таймерами, которые включают и выключают орошение в заданные промежутки времени.

    Расход воды – важный фактор, который напрямую связан с площадью тепличного помещения и особенностями выращивания конкретных растений. При оптимально заданных временных интервалах полива, датчики влажности выполняют функции аварийных сигнализаторов.

    Преимущества перед обычной

    В таблице №1 представлены преимущества и недостатки обыкновенной и умной теплиц.

    Обычная «Умная»
    Плюсы Минусы Плюсы Минусы
    Независимость от источников энергии Необходимость постоянного присутствия Автоматический и удаленный контроль Зависимость от источников питания
    Низкая себестоимость Повышенные трудозатраты Точное соблюдение режимов Затраты на приобретение оборудования
    Простота в обслуживании Минимальное участи человека Выход из строя отдельных элементов

    Недостатки с автономностью умной теплицы решаются с помощью аккумуляторов, генераторов и емкостей с водою.

    Проекты и схемы умных теплиц

    Среди почитателей роботизации дома и приусадебного хозяйства, наибольшим уважением пользуется умная теплица на ардуино. Главным компонентом платы-контроллера является процессор, снабженный микросхемой памяти. Используемые для умных теплиц схемы отличаются марками процессоров и функционалом.

    Одна из простейших схем-проектов автоматической теплицы на Arduino Uno (мини) изображена на рисунке 1.

    Освещенность оценивается фоторезистором. Температурный режим определяется датчиком TMP36. Интенсивность полива регулируется на основании данных с модуля влажности и датчика DHT11.

    Расширенный вариант управления микроклиматом в теплице предполагает плата Arduino Mega. Схема-проект интеллектуального «овощевода» представлена на рисунке 2.

    Сердцем аппаратной платформы является микроконтроллер ATmega1280. Для считывания/передачи цифровой информации используется 8 выходов. Для обработки аналоговых данных используется 10 портов.

    Еще один вариант теплицы с Арудино изображен на рисунке 3.

    В качестве универсального таймера-контроллера умной теплицы также можно использовать GyverControl (Рисунок 3).

    Интеллектуальное устройство оборудовано семью логическими выходами с напряжением 5В. Для управления серво- и линейными приводами предусмотрены 3 отдельных канала.

    Вышеуказанные схемы не являются окончательным решением роботизации теплицы. Появление новых, более совершенных контроллеров, расширяет возможности автоматики и придает ей большую эффективность.

    Возможности удаленного контроля и регулирования

    Помимо местного управления, умная теплица на Ардуино предоставляет возможность дистанционного контроля оборудования и обмена данными посредством пульта, мобильных гаджетов и персональных компьютеров. В качестве интерфейса может использоваться USB, Bluetooth, Wi-Fi, GSM и интернет. Посредниками в данном процессе служат соответствующие модули и приложения, которые представлены:

    • RemoteXY;
    • Blynk;
    • Virtuino;
    • Bluino Loader;
    • Arduino Bluetooth Control и пр.

    Особого внимания заслуживает софт BT Voice Control for Arduino, которое обеспечивает управление тепличным оборудованием с помощью голосовых команд. При синхронизации с «Алисой» это приложение предполагает массу удобств.

    Основные критерии выбора систем для автоматизации теплиц

    При кажущейся простоте, выбор оборудования для автоматизации тепличного хозяйства затрудняет даже специалистов. Идеальным условием считается подбор автоматики одного производителя. Поскольку данный критерий труднодоступен, перед тем, как автоматизировать теплицу необходимо:

    • определиться с ее площадью и назначением (выращиваемые культуры);
    • высчитать количество датчиков и исполнительных устройств;
    • в зависимости от предыдущего пункта подобрать контроллер или использовать конструктор;
    • решить вопрос с управлением и контролем.

    С развитием научно-технического прогресса, готовые проекты умных теплиц быстро устаревают. Поэтому при выборе автоматики для искусственного выращивания овощей и фруктов необходимо опираться на новейшие технологии и оборудование.

    Приборы для автоматизации теплиц за 2020 год

    Чтобы автоматизировать теплицу, необходимо обзавестись соответствующим оборудованием, примерами которого в 2020 году являются:

    • Контроллер для умной теплицы серии «iТеплица -малый контроллер». Гарантирует комплексный контроль микроклимата в помещении с ограниченной площадью. Обеспечивает поддержание температуры, проветривание, подкормку и полив растений. Предполагает управление вспомогательными механизмами. Рассчитан на длительное хранение данных обо всех изменениях окружающей среды. Оснащен продвинутой системой визуализации SCADA. Комплектуется датчиками влажности, освещенности и программным обеспечением. Цена от 17 тыс. рублей.

    • SMART STANDARD VENT «УМНАЯ ТЕПЛИЦА» — набор для автоматизации теплицы. Обладает богатым функционалом, охватывающим практически все сегменты поддержания заданного микроклимата. Для контроля и обмена данными используются гаджеты, связанные с интернетом. Цена от 47,9 тыс. рублей.

    • «Умница lite» – бюджетный вариант умной теплицы. Помимо блока управления комплектуется картой памяти micro SD, USB-адаптером, датчиками температуры, влажности, освещенности, уровня воды и пр. Цена от 9,9 тыс. рублей.

    • Смарт-теплица на базе контроллера Терраформ. Обеспечивает контроль пяти параметров микроклимата. Комплектуется датчиками температуры, влажности, освещенности, температуры почвы. Предполагает подключение сенсоров CO₂ и pH.

    Пошаговая инструкция создания умной теплицы

    Наделить «интеллектом» можно практически каждую теплицу, которая отвечает стандартам выращивания овощей, фруктов и цветов в искусственных условиях. Для этого необходимо:

    1. Приобрести готовый комплект автоматики или подобрать оборудование, которые соответствуют созданию необходимого микроклимата и площади помещения.
    2. Оптимально разместить датчики и исполнительные устройства.
    3. Соединить все элементы с контроллером.
    4. Установить необходимое программное обеспечение.
    5. Предусмотреть дистанционное управление.
    6. Организовать автономное питание.

    Один из вариантов создания умной теплицы представлен в видео:

    Пошаговое руководство как с помощью автоматики оборудовать теплицу: обзор видов и производителей, как сделать своими руками

    Растения требуют постоянного получения питательных веществ и ухода. В этом смогут помочь автоматические устройства, контролирующие действия и процессы.

    Такие системы хорошо подходят для придомовых и дачных крытых сооружений. Вследствие этого работы, связанные с уборкой и уходом за растениями, выполняются с минимальными физическими затратами.

    Преимущества использования автоматики

    Внедрение автоматической системы обеспечивает существенное облегчение труда на приусадебном участке, повышению урожайности.

    Монтаж автомата для сооружения подобного типа способствует оптимальному микроклимату для роста культур. Такие системы экономят время, израсходованное на полив на даче. Это особенно актуально, так как его нужно выполнять ежедневно.

    Также потребуется расходовать меньше воды и внесения удобрения. Установка теплового подогрева и освещения способствует круглогодичному выращиванию в парниках овощных культур, зелени.

    Если предусмотреть наличие на дачном участке автоматизированного строения, то можно выращивая урожай насладиться единением с природой. Парник без присмотра можно оставить в течение недели.

    При этом не придется сталкиваться с неприятной ситуацией, когда саженцы завянут.

    Виды автоматических устройств для теплиц и парников

    Полив

    Полезнейшей функцией в теплице является автоматическая система полива. При поливе овощных культур дважды в день обеспечивается быстрый рост растений.

    Монтирование подобной системы понижает затраты времени на полив, по сравнению со шлангом.

    Такие поливы подразделяются на дождевание, капельный, внутрипочвенное орошение. Подбирая их, следует брать во внимание квадратуру обработки и мощность насоса.

    Первый тип сопоставим с душем. Подача воды осуществляется посредством трубок под незначительным давлением. Специально предназначенные насадки смогут обеспечить оптимальное орошение культур. Второй тип предполагает просачивание воды посредством трубок, проложенных по периметру размещения грядок.

    В дальнейшем вода под давлением может выйти посредством специальных оросителей, попав на почву и наполнив корневую систему растений влагой.

    Последний тип предназначается для орошения многолетних растений с использованием емкостей, трубок с отверстиями. Установив автоматический полив, можно всегда получать урожай в значительных объемах.

    Вентиляция

    Контроль температуры внутри помещения выполняется с помощью вентиляционных систем. Автономные системы оснащены открыванием и закрытием форточек в автоматическом режиме. Такие системы бывают разных видов в соответствии с принципом их функционирования.

    Система, предполагающая электрическое управление, основана на работе термореле. При нагреве реле начинает запускаться электромотор вентилятора.

    Она дает возможность пользователю отрегулировать чувствительность, температуру воздуха, обеспечивая удобство в применении.

    Биметаллическое автономное проветривание предполагает использование характеристик пластин при нагреве. В итоге происходит изменение их положения, открывающее створку в теплицу. При охлаждении пластины начинают сужаться.

    Существует гидравлический способ проветривания. В системе имеется жидкость, которая нагреваясь проникает в трубочку из латуни. Она выдвигается, что способствует открытию рамки в теплицу. Данные системы характеризуются удобством в эксплуатации и отменной мощностью.

    Отопление

    Предусмотрев автоматику для обогрева можно поддерживать требуемую температуру в теплице. Подобные системы обогревают воздух и почву вне зависимости от погодных условий.

    Произвести обогрев строения можно, установив нагревательный кабель (теплый пол).

    В теплице станет теплее с монтажом нагревательных приборов. К ним относится масляный радиатор, электрический камин. Также иным вариантом служит водяное отопление (водяной теплый пол).

    Если предпочтение было отдано ему, то надо обустроить дополнительное оборудование, включающее электрический или газовый котел на жидком/твердом топливе.

    Когда теплица обустраивается согласно принципам, основанным на автоматизации, то во всех отношениях подходит система теплый пол, электрические приборы, система водяного отопления с электрическим котлом.

    Их регулирование происходит исключительно вручную.

    Освещение

    Вырастить растения независимо от времени суток можно, установив систему освещения в тепличном сооружении. Подача требуемых микромолей способствует нормальному фотосинтезу.

    При автоматизации процесса освещения можно автоматизировать этот процесс по заданным показателям.

    Настройка системы освещения происходит с учетом времени или согласно астрономическому таймеру. Она работает по такому механизму, что с сокращением светового дня увеличивается досвечивание лампами.

    Работа освещения происходит в соответствии с сумеречными датчиками. Их использование связано со сложностями, заключающимися в калибровке и периодичности включения.

    Как сделать своими руками: примеры расчетов, схемы и чертежи, лучшие варианты

    Специалисты утверждают, что требуется приобретение датчиков и системы капельного полива.

    Монтаж, возможно, осуществить самостоятельно. Есть системы капельного полива, рассчитанные на 200 л воды, которая расходуется в течение 4-5 поливов.

    Неплохим вариантом будут израильские капельницы, более устойчивые к напору.

    Подсчеты специалистов по капельному поливу, учитывая все моменты, в среднем составляют 14 678 руб. (на основе системы Gardena).

    Они подробно освещают порядок очередности и последовательности всех работ. Останавливаются на вопросах грамотного управления теплицей.

    Для того чтобы выбрать для себя подходящий проект автоматизированной теплицы можно воспользоваться специализированными компьютерными программами, которые позволят создать модель 3D парника.

    Совершенствование парника способствует получению конструкции для круглогодичного использования.

    Простой капельный полив

    Система капельного полива способствует достаточному получению растениями требуемого объема влаги.

    Дачники предпочитают применение системы капельного полива Капля.

    Многие знатоки придерживаются мнения, что использование медицинских систем для капельниц значительно дешевле и не хуже.

    Для этого необходимо иметь в наличии несколько таких систем, шланг и бак на 20-30 литров воды. Такой вариант эффективен, когда в теплицах выращивается небольшое количество растений.

    Самодельный водопровод можно сделать с помощью саморезов, которые вкручиваются в шланг напротив каждого растения. Подача воды под растения регулируется при помощи метизов, вкручивающихся/выкручивающихся по резьбе.

    Придется потратить время, чтобы подстроить настройку полива.

    Использование контроллеров для регуляции влажности и температуры: как автоматизировать систему вентиляции

    Для этих целей используются измерители-регуляторы, как например, ИРТВ-02. Прибор можно настраивать на осуществление нагрева, охлаждения, осушения и увлажнения.

    Это возможно за счет высокотехнологичного емкостного датчика, которым снабжен прибор.

    Точность измерений составляет 0,1. Показания отображаются на 2-х экранах, что облегчает процесс контроля за этими величинами.

    Автоматика для отопления

    Большое значение для теплиц имеет автоматизация отопительной системы. Без этого немыслима жизнь растений в зимний период года.

    На сегодняшний день существует множество вариантов их обогрева в соответствии с видами энергоносителей.

    Это могут быть системы электрического теплого пола, конвекционный обогрев с помощью тепловентиляторов, масляных радиаторов, электрокаминов, инфракрасного обогрева газовыми горелками.

    Наиболее оправданной и безопасной, по мнению специалистов, считается электрообогрев или водяной от электрокотла.

    Система зашторивания

    Первоочередной составляющей конструкции является данная система, обеспечивающая необходимый микроклимат и экономичность в энергетическом плане.

    Применяемый материал экрана — специальная ткань на основе полиэстера, включающая полоски фольги из алюминия.

    Может использоваться принцип перемещения штор с помощью троса и на основе реек.

    Идеи автоматизации с использованием подручных средств

    Сделать рычаги самостоятельно можно, применяя отрезки планок на основе дерева или металла.

    Автоматизация процесса полива осуществляется с помощью подручных средств на основе способа солнечной дистилляции.

    Он обеспечивает достаточную влажность культурам даже при жаркой погоде. Метод предполагает нагрев воды до появления пара, конденсируемого в воду. Для этих целей нужно взять пластиковые бутылки различного объема. В одну наливается вода, вторая служит колпаком для нее. В результате испарении воды оседание пара происходит на стенках колпака.

    Не сложно смонтировать устройство для капельного полива, воспользовавшись стержнями ненужных шариковых авторучек.

    Их надо промыть бензином, чтобы очистить от пасты. Один конец надежно закрывается палочкой из дерева. Иглой для шитья прокалывается отверстие на четыре сантиметра от заглушки.

    В бутылке отверстие делается немного поменьше, чем стержня. Существует несколько вариантов, как установить такие емкости.

    Первый предполагает отрезание дна, когда отверстие делается для стержней на уровне плечиков. Пробка закрывает горлышко.

    Бутылка устанавливается вверх дном. Другой способ состоит в том, что отверстия делаются выше на 20 мм от дна. Пробка снимается, бутылка ставится на дно.

    Отверстие надежно уплотняется с помощью пластилина. В дальнейшем можно наливать воду. В течение пяти минут будет вытекать десять капель.

    Полезные советы: какие компоненты для автоматизации можно купить в магазине, на чем сэкономить

    В садовом магазине можно купить приборы электроники. Они продаются по доступной стоимости. Их монтаж выполняется с применением набора, состоящего из отверток, электродрели и пассатижи.

    Расположив блок управления и датчики, можно обеспечить бесперебойное функционирование системы.

    Опытные дачники для экономии советуют установить гидравлические элементы управления. Выполнить монтажные работы можно, используя инструмент и несколько автоматических “открывателей”.

    Дачники на собственном опыте убедились, что автоматизация теплицы позволяет получить щедрый и качественный урожай.

    Монтаж таких устройств способствует созданию микроклимата, позволяющего растениям приниматься и быстро плодоносить. Специальные приспособления упрощают процесс ежедневного ухода за тепличными сортами растений.

    Автоматизация теплицы своими руками

    По сути ничего абсурдного в этом нет. Ведь автоматические системы проветривания и полива теплиц, активные методы сохранения экосистемы земли издавна уже никого не поражают. Просто в вполне автоматической теплице все это работает в комплексе и указывает фантастические результаты. Этим и отличаются подобного рода теплицы от обычного парника и оранжереи.

    Регулятор температуры в теплице из пластиковых бутылок

    Отзывы:

    Роман Байков пишет: Воздух стравится через пару недель . абсолютно герметично вам не сделать . Советую залить в малую бутылку бензин и обойтись без остальной системы. бензин очень сильно выделяет пар в жару и конденсирует его обратно при понижении температуры. отрегулируйте давление на бутылку гирей вашей. А так то идея конечно супер! лайк!

    Александр Груздь пишет: нет ничего проще электроники

    константин Бонч-бруевич пишет: Штирлиц подошёл к форточке,из форточки дуло.Штирлиц закрыл форточку-дуло исчезло.

    MegaBUMER777 пишет: ты на теплице покажи хер ли на столе шлышал звон да не знаешь где он

    Zhandos Kossakbay пишет: молодец спасибо

    Все автоматические теплицы можно поделить на 2 вида: автономные и энергозависимые. Фактически совершенные условия для роста овощных растений способны сделать энергозависимые теплицы, в каких от электросети работает вся имеющаяся автоматика. Но зависимость автоматики от электроэнергии может привести к потере драгоценного урожая в очень недлинные сроки. Зимой бывает довольно для этого 1-2 ч. Такая ситуация полностью вероятна, так как от сбоев в подаче электроэнергии никто не застрахован. К тому же значительно могут сказаться на бюджете издержки на оборудование и электричество.

    Открывание окон теплиц на реле

    Отзывы:

    Владимир Петрович Ярмоленко пишет: Класс! Особенно комментарий автора. Есть еще золотые руки.

    Владимир Петрович Ярмоленко пишет: Класс! Особенно комментарий автора. Есть еще золотые руки.

    Рано с утра, как 1-ые солнечные лучи попадают в теплицу, температура в последней начинает довольно стремительно повышаться – и чем выше по высоте, тем резвее. Для растений это – отлично. Вот только есть неувязка: перепад температур в это время меж почвой и воздухом добивается иногда различия в 30°С! Корешки остаются еще прохладными, тогда как вершины растений уже разогрелись. И происходит вот что: более «холодная» подземная часть плохо снабжает более «теплую» высшую часть растений, что приводит к простому недостатку воды. Что по сути для растений все-же не есть отлично.

    Еще больший стресс растения испытывают в жару в таковой теплице. Ведь обычно хозяева идут своими руками открывать форточки и двери уже тогда, когда температура снутри добивается 40°С. Влажность воздуха при всем этом резко падает, растения начинают испытывать засуху. И что происходит далее? Еще ужаснее – двери и форточки резко открывают, и образовавшийся сквозняк уносит остатки и так не достающей воды. Просто-таки как в пустыне! Юные побеги от этого теряют тургор – давление снутри клеток, вянут, а цветочки и завязи и совсем отпадают. А вот вредители, в особенности паутинный клещ, от жары и сухости начинают ощущать себя как раз отлично.

    Два вида автоматики для проветривания теплиц сравнение.

    Отзывы:

    nik serj пишет: А подскажите зачем бутылки с водой

    nik serj пишет: А подскажите зачем бутылки с водой

    Естественно, эти системы не могут непосредственно влиять на, например, температуру воздуха или почвы. Их влияние на эти параметры является опосредованным – изменяется температура нагревательных элементов внутри нагревательных приборов систем обогрева, далее посредством конвекционного переноса теплоты или посредством электромагнитного инфракрасного излучения происходит изменение температуры воздуха и почвы в теплице. Отсюда становится понятно, что автоматические устройства управляют состоянием именно технических средств, входящих в состав соответствующих систем теплицы.

    Как известно, автоматизировать включение/выключение газовых нагревателей запрещено по соображениям техники безопасности. Следовательно, все газовые или жидкотопливные котлы необходимо включать/выключать вручную. Необходимость того же способа управления твердотопливными колами вполне очевидна. Отсюда следует, что автоматическую систему управления обогревом теплицы своими руками можно сделать лишь на основе электрообогрева или водяного обогрева от электрокотла.

    Чтобы автоматизировать все процессы, помогающие выращиванию растений в закрытом грунте, лучше купить готовые приборы, и встроить в сеть автомат для теплицы своими руками. В случае самостоятельной сборки устройств, интересные схемы в избытке можно найти в Сети.

    Автоматический полив можно сделать из средств находящихся под рукой различными способами. Первый метод является очень простым. С его помощью растения будут получать влагу в достаточном количестве даже в самые жаркие дни. Принцип заключается в солнечной дистилляции. Жидкость будет нагреваться до выделения пара, после этого пар будет конденсироваться в воду.

    Чтобы реализовать данную систему, понадобится подготовить 2 бутылки из пластика различных размеров. В одну из них надо будет налить воду, а вторая будет использоваться в качестве колпака для первой. Когда жидкость от солнечных лучей испарится, пар осядет на стенах второй бутылки. Подобный конденсат способен отлично увлажнять почву. Чем больше светит солнце, тем большее количество влаги будут получать растения.

    Полив в теплице можно установить при помощи жестяного короба, ( сборника влаги ), подойдёт и другой материал. Сделать короб,

    2?1.5 м. по центру отверстие для шланга. Установить изделие на ножках рядом с теплицей, вровень с крышей, шланг распределить по теплице, соединив с коробом, через кран.

    Автоматизацию полива и вентиляции я сделал уже давно и все самодельное. Приводы применял от списанных военных радиостанций, брал верньерное устройство. А вот в прошлом году вычитал, что в разные периоды созревания , нужно правильно подбирать цветовой спектр. Хочу на следующий год и это проверить, на сколько оно действенно.

    По сути, автоматизация теплицы действительно актуальный вопрос. У меня есть дача, на которой я выращиваю тепличные огурцы, и не всегда есть возможность постоянно находиться на ней. Поэтому, вероятнее всего, возьму вашу статью на заметку и попробую сделать все возможное, чтобы облегчить работу. Спасибо!

    Спасибо, то что, просто соглашусь, а то что, аккуратно не очень, все привязано на проволоке, для быстрого съема. Чтобы демонтировать устройство достаточно взять с собой плоскогубцы. У меня один механизм на все окна, вполне достаточно. Окна не выворачивает, наверное от конструкции зависит. Бачок 3 литра из расчетов. Именно настолько расширяется 3 литра масла (в диапазоне температур от 20 до 40 градусов, чтобы заполнить объем гидроцилиндра, если сделать больший объем в жару будет разрывать бачок, внутренним давлением, если меньше, шток будет выдвигаться не до конца.

    Здравствуйте!Подскажите пожалуйста собрал все как у вас-бочек на 3 литра,цилиндр от калины 1119 , тормозной шланг от волги !почему то при нагреве немного выдвигается шток но если на него нажать то он с легкостью возвращается назад а вот вытащить довольно тяжело! Если можно поподробнее как прокачать и избавится от воздуха если это надо?Вытянули шток, налили масло шприцом, заполнили бочек маслом, собрали все в кучу -если не работает в чем дело?

    Проветривание теплицы.Автоматическая форточка. Автомат для проветривания для теплиц

    Отзывы:

    Радик Лутфуллин пишет: На канале есть видео как они работают в теплице

    Радик Лутфуллин пишет: грел для того чтобы быстро показать его работу. а в теплице он сам открывается. температуру начала открытия можно настроить так что откроется даже при нулевой температуре.

    Радик Лутфуллин пишет: Вот сайт

    nik serj пишет: Зачем резервуар? Шланг? Один цилиндр и всё

    дмитрий комаровский пишет: Эта система очень отлично работает.Я сам такой привод в прошлом году делал,в этом году второй,полностью самодельный.Вот ели бы еще варить хорошо умел, было бы похоже один в один,

    Пример использования современных средств автоматизации в теплице, как сделать умную теплицу на ардуино

    Теплицы — это сооружения, предназначенные для выращивания натуральных овощей в более короткий промежуток времени, чем в открытом грунте. Использование теплиц распространено как у частных владельцев, так и в сельском хозяйстве в целом.

    Раньше автоматизация работы теплицы была дорогостоящей, а порой и не окупаемой процедурой, но на данный момент решение этой проблемы не столь дорого и вполне окупается, а в дальнейшем, к тому же, приносит еще большую выгоду.

    Многие факторы, нужные для эффективного выращивания овощных культур, требуют применения современной автоматики, например:

    1) Автоматическое поддержание оптимальной температуры воздуха;

    2) Автоматический полив;

    3) Автоматическое включение освещения;

    4) Автоматический подогрев почвы.

    Теплицы претерпели значительные изменения за последние десять лет, особенно с внедрением автоматизации. Современные теплицы способны управлять и оптимизировать факторы окружающей среды, влияющие на урожай, такие как орошение, влажность, температура, вентиляция, воздействие света и другие, обеспечивая оптимальные условия выращивания и эффективное использование энергии.

    Интеллектуальные теплицы от полуавтоматических до полностью автоматизированных — отличный выбор для производителей, которые хотят свободно приходить и уходить, когда им заблагорассудится, и заботиться о своих культурах. В умной теплице можно контролировать микроклимат и соответствующим образом корректировать ключевые факторы, влияющие на урожайность.

    Автоматическое поддержание оптимальной температуры воздуха

    При выращивании помидоров и огурцов, как наиболее распространённых культур выращиваемых в теплицах желательно чтобы температура воздуха была от +18 до +25 °С днем и не ниже +16 °С ночью. Температура почвы от +10 °С и выше.

    Понижение температуры осуществляется с помощью актуаторов, которые открывают форточки теплицы для проветривания при повышении температуры воздуха. Для этих целей можно также использовать шаговые двигатели, по сигналу открывающие форточки на нужный угол.

    Актуаторы желательно использовать не только с датчиком температуры, но и с датчиком ветра, чтобы не навредить растениям. В роли датчика температуры воздуха можно использовать простой и не дорогой цифровой датчик DS18B20.

    Полив растений

    Автоматический полив осуществляется с помощью датчиков влажности, которые ограничивают полив, но также совместно с ними лучше использовать датчик расхода воды, так как простые, недорогие датчики почвы очень быстро окисляются и выходят из строя. Для малых фермерских хозяйств можно использовать самодельные датчики влажности на базе таймера NE555.

    Современной данную микросхему не назовёшь, зато она зарекомендовала себя как надёжное электронное средство, применяемое во многих областях. Электроды должны быть выполнены из графита, который не окисляется. Выход 3 микросхемы подключён к светодиоду, который сигнализирует о выходе влажности за пределы. Данный выход можно так-же подключить к системе управления и по сигналу от него отключать или включать полив.

    Датчик влажности почвы на микросхеме NE555

    Важно знать необходимый расход воды в день (который будет зависеть от площади теплицы, потребности выращиваемых растений в воде, плотности их посадки и т.д.), тогда достаточно проводить управление поливом с помощью датчиков расхода воды по времени, а датчики влажности использовать в качестве аварийных сигнализаторов перелива.

    Управление освещением

    Автоматическое освещение проще всего реализуется с помощью простого фоторезистора. При уменьшении света его сопротивление повышается и таким образом формируется управляющий сигнал на включение светильников в теплице.

    Подогрев почвы

    Автоматический подогрев почвы осуществляется точно также как и воздуха, но вместо актуаторов для регулирования температуры используются нагревательные ТЭНы или греющий кабель.

    Автоматизация — важнейшая основа для максимального контроля и мониторинга всех основных и ключевых процессов современных тепличных садоводческих проектов. Автоматизация позволяет управлять процессами и отслеживать их из любой точки мира 24 часа в сутки, семь дней в неделю. Таким образом, автоматизация теплиц является ответом на растущий спрос на полный контроль процессов в реальном времени.

    Устройства управления системой автоматизации

    Отдельно стоит сказать об устройствах, которые принимают информацию от датчиков, анализируют и выдают управляющие сигналы на актуаторы, нагревательные ТЭНы, клапана подачи воды и т.д. В интернете можно встретить очень много статей посвящённых такой платформе как Arduino на базе которой предлагается создавать автоматизацию небольших теплиц.

    Arduino — аппаратно-программное средство с предварительно прошитым в него загрузчиком, который позволяет загружать свою программу в микроконтроллер без использования отдельных аппаратных программаторов. Микроконтроллер на плате программируется при помощи языка Arduino, основаном на языке Wiring (Си подобный).

    Все результаты работы оборудования в автоматизированной теплице при необходимости можно визуально отследить на компьютере. В еб-интерфейс может давать возможность не только следить за показаниями датчиков температуры, влажности и освещения, но и управлять этими самыми показаниями. Также может быть реализована возможность следить за теплицей через веб-камеру .

    Система управления теплицей контролируется центральной платой Arduino , работает следующим образом: полученные данные об окружающей среде датчик температуры воздуха влажности или освещения предается центральному контроллеру ( Arduino ) которое сравнивает текущие значения с заданными. Если какое-либо из значений не соответствует то исполнительный механизм приводится в действие для восстановления оптимального состояния. Далее Arduino отправляет данные на удаленный сервер для мониторинга через интернет.

    Пример использования Arduino для автоматизации теплицы

    Пример схемы автоматизации теплицы на Arduino

    Посредством специального программируемого блока осуществляется контроль таких параметров как:

    отопление внутреннего пространства теплицы;

    периодичность и продолжительность полива;

    запуск и отключение принудительной вентиляции;

    Контроль температуры воздуха определяется по двум пороговым пределам: верхний предел и нижний предел. Когда верхний предел превышен открываются форточки, вентилятор приводится в действие для охлаждения парниковый среды для притеснения можно использовать шторки и когда температура падает ниже нижнего предела, вентилятор отключается, включается нагреватель что бы нагреть воздух до заданного уровня.

    Контроль влажности определяется порогом, установленным пользователем. когда влажность в теплице падает ниже заданного порога, система автоматического полива включается, а затем выключается, когда оптимальное состояние восстанавливается.

    Условие освещения управляется двумя заданными точками: верхний предел и нижний предел. Верхний предел определяет, когда свет активируется в то время как нижний предел определяет, когда она выключена. Эта стратегия в основном используется для увеличения дневного света или компенсировать недостаточное естественное освещение в соответствии с желанием пользователя.

    Универсальный контроллер для умной теплицы, да или вообще для чего угодно! Системы полива, гроубоксы, гидропоника, инкубаторы:

    Несмотря на простоту программирования и подключения, а также невысокую стоимость, по моему мнению, реализация подобных проектов на Arduino бывает затруднительна.

    В качестве ведущего управляющего устройства может быть также использован микрокомпьютер Raspberry Pi 2 , сочетающий в себе преимущества Arduino и персонального компьютера, т. к. способен запускать отдельную операционную систему и имеет порты ввода/вывода для подключения ведомых устройств и получения сигналов от датчиков.

    Умная интернет-теплица — Проект IOT (Интернет вещей):

    Пример автоматизированной теплицы для Raspberry Pi 3 и Arduino Uno

    Цель заключалась в создании теплицы, в которой такие параметры, как температура и влажность почвы, а также солнечный свет для растений, будут автоматически контролироваться и поддерживаться как можно более постоянными.

    Температура внутри теплицы управляется инфракрасной лампой, которая нагревает воздух, серводвигателем, открывающим окно, и вентилятором от ПК, который позволяет воздуху дуть извне. Влажность почвы контролируется специальным датчиком — если она опускается ниже запрограммированного порога, насос подает воду к растениям.

    Все оборудование управляется через сайт, что позволяет удаленно контролировать работу теплицы и настраивать все параметры по сети.

    Датчики позволяют измерять температуру внутри и снаружи теплицы, а также влажность почвы и интенсивность освещения.

    Данные, считанные с внутреннего датчика температуры, используются для управления моторизованным окном теплицы и вентилятором, которые активируются, когда температура внутри теплицы поднимается выше установленного уровня.

    Когда температура падает до заданного уровня, вентилятор останавливается, а окно закрывается. Когда температура слишком низкая, система включает лампу, которая нагревает воздух.

    Датчик влажности контролирует влажность почвы в теплице. В том случае, если влажность почтвы слишком мала, система активирует насос, который подает воду для полива растений.

    Модуль Arduino подключается к Raspberry PI версии 3 через USB-кабель. Это соединение позволяет считывать параметры датчиков, подключенных к Arduino, и управлять отключенными системами, подключенными к этой плате.

    Все эти данные хранятся в базе MySQL на Raspberry Pi. Связь между Raspberry Pi 3 и платой Arduino Uno реализована как ведущий / ведомый (где ведущим является RPi).

    Сценарий, написанный на Python, который работает на Raspberry Pi, отвечает за обмен данными, запись и чтение данных из базы данных MySQL и отправку новых настроек в Arduino Uno.

    На этой блок-схеме показано, как все устройства, используемые в проекте, подключены к отдельным модулям:

    Созданный сайт состоит из трех страниц. Первая страница — это домашняя страница, на которой пользователь может просматривать состояние отдельных компонентов системы и параметры, измеряемые датчиками. На второй странице можно отдавать команды системе и изменять рабочие параметры.

    На этой странице пользователь может изменить режим работы системы или просто выключить ее. Также здесь можно изменить настройки всех параметров — температуры, влажности почвы и т. д. Введенные значения каждый раз проверяются на правильность, чтобы неправильно введенные элементы не сохранялись в базе данных.

    Последняя страница содержит информацию об авторах проекта.

    База данных MySQL состоит из трех таблиц. В первой таблице записываются данные, собранные с датчиков в системе. Вторая таблица содержит параметры каждого выполненного измерения, а третья позволяет управлять теплицей и считывать ее текущее состояние.

    Использование ПЛК в умной теплице

    Для автоматизации теплицы проще всего купить уже готовое устройство в виде программируемого реле или программируемого логического контроллера. Из отечественных производителей подобной продукции наиболее известны фирмы ОВЕН, Сегнетикс и др. Альтернативой для тех, кто научился программировать Arduino может стать ПЛК Controllino.

    ПЛК Controllino: MINI (слева), MAXI (по середине) и MEGA(справа)

    Единственным минусом данного ПЛК являются релейные выходы с током до 6 А. Но если в теплице используется электрооборудование с меньшим потреблением тока, то данный ПЛК подходит как нельзя лучше.

    На сегодняшний день он выпускается в 3 вариантах: MINI, MEGA, MAXI. Важным плюсом является также возможность подключения к Интернету через интерфейс Ethernet для дистанционного мониторинга и управления. Данный интерфейс доступен в версиях MEGA и MAXI.

    Умная теплица своими руками:

    Таким образом, создание автоматизированной теплицы на сегодняшний день является простой и относительно недорогой задачей для малых фермерских хозяйств.

    admin
    Зернокорм
    Добавить комментарий